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Abstract—Decision support systems in analytical systems based on the use of big data involve
the formation of integral assessments of population objects using all parameters or some subset
of them. The article discusses the problem of obtaining a multi-objective (multi-parameter)
assessment of objects and an approach that involves the use of importance weights in the
presence of high-quality and, possibly, incomplete information about the relative importance of
certain criteria. The fundamental principle of various quantitative assessments of the mutual
preference of private particular criteria for various objects in the population is considered while
maintaining the system of preferences of the entire set of objects. The approach used assumes
that the decision maker formulates qualitative information about the relative preference of
certain criteria in the form of a not necessarily complete preference graph. For each object,
weighting coefficients are calculated automatically according to the principle of a guaranteed
result by solving an optimization problem using generalized logical criteria of maximum risk
and maximum caution. For special cases of preference systems, analytical relationships and
algorithms for calculating weight coefficients are given. This technique ensures the use of
additional qualitative information about the preferences of certain criteria, obtaining numerical
values of significance weighting coefficients and solving the problem of multicriteria assessment
based on the principle of a guaranteed result.
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1. INTRODUCTION

Problems of multicriteria assessment are widespread in various fields of activity, and, conse-
quently, in various subject areas. In this case, the assessment task is understood as the situation of
the need to obtain an integral assessment of the objects in the population for the subsequent final
choice of the decision maker. The objective complexity of such problems lies in the impossibility
of achieving the best values for all criteria at the same time, so we are talking about choosing a
compromise solution, that is, a solution that cannot be improved by any of the criteria without
worsening the other criteria. One of the most common approaches to solving such problems is to
generate a numerical value estimate for each feasible solution and therefore solve a single-criteria
optimization problem or, in the case of a discrete set of feasible solutions, a selection problem [1].

There are approaches to the problem of multi-criteria choice that take into account qualitative
information about the preferences of decision makers [2]. The main disadvantage of these methods
is the requirement for the decision maker to introduce a sufficiently large number of additional
parameters (exact numerical values), the absence (at least partial) of which makes the applicability
of these methods impossible. The described technique involves the use of exactly the amount of
information that the decision maker is ready to provide (in a specific case, the absence of such
information at all) [4–6].
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One of the most common methods for solving multicriteria (multiobjective) problems is the use
of a generalized optimality criterion, which includes importance weights that reflect the decision
maker’s idea of the relative importance of certain optimality criteria [2]. The importance of cri-
teria is understood here in the sense of the axiomatic theory of importance, which allows us to
assume that if there is additional information of the form the ith criterion is more preferable than
the jth criterion (Qi � Qj), then for weighted coefficients, the ratio wi > wj should be true. In this
case, of course, the decision maker requires exact numerical values of the weighting coefficients.

The weights may be assigned by the decision maker in various ways [3]. All known methods of
individual examination require from the decision maker or expert complete and accurate answers
(most often with numerical estimates) to the questions that the chosen method asks. The described
approach allows the use of incomplete and/or qualitative information about the preferences of
particular criteria.

2. MULTICRITERIA ESTIMATION PROBLEM STATEMENT

In general, the problem of multi-criteria choice can be formulated as follows.

The decision maker (DM) has formed a set of a number of feasible alternatives, from which
DM needs to make a single and final choice. The choice is made as selection of a certain subset of
alternatives (in a particular case, one alternative) such that the decision maker considers them the
best and equivalent to each other in terms of the best quality.

Also in practice, the problem of multicriteria (also multiobjective) evaluation of options is con-
sidered and solved, as a result of which the decision maker seeks to order the options by preference
for further analysis. Obviously, this task (estimation) is a generalization of the previous one (choice)
and does not contradict practice.

Traditionally, the following components of the decision-making model are considered:

— initial set of options (solutions, alternatives) from which the choice is made;

— the principle of optimality, on the basis of which the best option (or best options) is selected;

— decision maker (DM), who determines the process of finding a solution, as well as experts and
consultants who assist him in this.

Without limiting the generality of the mathematical formulation, we will assume that the set of
feasible solutions is a discrete finite set of alternatives, each of which is denoted by a number:

D = {1, . . . ,m} . (1)

The choice task is to choose the variant x∗ ∈ D = {1, 2, . . . ,m}, which is the best (optimal) from
the decision maker’s point of view.

Since there is no optimal solution in most cases of a multi-criteria choice problem, the term
“rational decision” has become established in the literature, which means the presence of rational
reasons understandable to other people that led to the choice of this solution from a set of acceptable
ones.

Many approaches to solving problems of multi-criteria choice involve the use of an estimation
problem. The task of evaluation is to determine for each alternative a numerical value that char-
acterizes the quality (utility, efficiency, etc.) of this option in terms of the subject area and the
relative importance of particular criteria in accordance with the individual opinion of the decision
maker. At the same time, for comparability of alternatives, this generalized characteristic should
have a direction and scale.

In the future, we will assume that the measurement scales of particular optimality criteria are
defined and the numerical value of the assessment by option can be obtained for each option and
each criterion.
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We will also assume that all partial criteria are reduced to a dimensionless form and to a single
measurement scale [α, β], while 0 � α < β.

The general idea of evaluation is to construct a scalar function F (Q (x)), which has the property
of ordering the original options according to their preference. The procedure for constructing such
a function is called folding or combining the vector optimality criterion (as an option, folding or
combining particular criteria):

min
x∈D

Q1(x), min
x∈D

Q2(x), · · · , min
x∈D

Qn(x), (2)

subject to

D = {1, 2, . . . ,m} (3)

reduces to a one-criterion (scalar) problem

min
x∈D

{F (Q1(x), . . . , Qn(x))} . (4)

The function F is called the generalized criterion for the optimality of the problem (2). To take
into account the relative importance of particular criteria, weights of the relative importance
w = (w1, . . . , wn) are used. Various functions can be used as a generalized criterion, particulally
generalized logical criteria of optimality:

“maximal caution” criterion:

FLmin
(w,Q1(x), . . . , Qn(x)) = min

1�i�n
(wiQi(x)), (5)

“maximal risk” criterion:

FLmax(w,Q1(x), . . . , Qn(x)) = max
1�i�n

(wiQi(x)). (6)

Where the weights wj , j = 1, . . . , n reflect DM’s view of the importance of private optimality
criteria. The importance of criteria is understood here in the sense of the axiomatic theory of
importance, which allows us to assume that if additional information of the form ith criterion is no
less important than the jth criterion (Qi � Qj), then the following relation is true for the weight
coefficients and:

Qi � Qj ⇔ wi � wj. (7)

Again, to solve the original selection problem, the exact assignment of weighting coefficients of
importance in numerical form is required. In this case, it is usually assumed that the weighting
coefficients of importance belong to the region of admissible values of the following form (hereinafter
we will refer to it as the region of admissible values of the weighting coefficients):

D0
w =

{
w ∈ Rn| wi � 0, i = 1, 2, . . . , n;

n∑
i=1

wi = 1

}
. (8)

It is known that the choice of weight coefficients of the importance of particular criteria in strict
accordance with can lead to a certain problem: if for some particular criterion Qi the value of the
corresponding weight coefficient of importance is zero (which does not contradict the construction
of the region Dw), then this criterion will essentially be struck out of consideration and it makes
no difference what value it will have. Mathematically, this will lead to a weak efficiency of the
solutions obtained (proof in [Podinovsky, Nogin]).
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In addition, it is known that the sum of the importance weights can be any positive number (for
example, equal to 100, if it is convenient to work in percentage terminology).

Therefore, we finally come to the following formulation of the range of feasible values of weight
coefficients of importance:

D1
w =

{
w ∈ Rn| wi � w0 > 0, i = 1, 2, . . . , n;

n∑
i=1

wi = R

}
. (9)

To solve the original selection problem, the decision maker needs to assign the exact values of
the importance weights in numerical form from the range of their feasible values.

Approaches to the definition and methods for assigning weighting coefficients are widely de-
scribed in the literature. Among them are the following [5]:

— ordering criteria by importance;

— determining the ratio of weight coefficients, while the decision maker specifies the ratio wiwj

in numerical form;

— construction of tables based on pairwise comparison of criteria by importance;

— method for determining weights using a set of sequential comparisons (Churchman-Akoff
method);

— methods that use information about the quality of the optimal values of particular criteria;

— game-theoretic methods for assigning weight coefficients and others.

These methods have a number of significant drawbacks in their practical application.

(1) The statement (7) implies a “transition” from qualitative information (Qi � Qj) to quantita-
tive information (wi � wj). Obviously, this is a big uncertainty, which will eventually lead to
different solutions.

(2) All of the listed methods for assigning numerical values of weight coefficients of importance are
sequential algorithms that require accurate quantitative information from the decision maker
at each step of this algorithm. As soon as the decision maker refuses to answer the next
question, the entire algorithm terminates and the numerical values of w are not calculated.

3. ANALYSIS AND USE OF QUALITATIVE INFORMATION ON THE RELATIVE
IMPORTANCE OF PARTICULAR OPTIMALITY CRITERIA – MINIMAX APPROACH

In a number of works [4–6], the main idea and concept of this approach are formulated, which
are as follows.

(1) It is assumed that when using generalized optimality criteria with weighting coefficients of
importance, their values can be different for each feasible solution of the domain D.

(2) The decision maker can formulate preferences on the set of particular criteria in the form of a
set of relations, not necessarily for all possible pairs of particular criteria.

(3) Importance weight values are calculated automatically based on the guaranteed result prin-
ciple. That is, for each feasible solution, such a set w ∈ Dw is determined that provides the
“worst” value of the generalized criterion for all possible values of the weight coefficients.

Let us consider in more detail a particular, but often occurring case, in which the decision
maker establishes mutual preference for some L pairs of particular criteria (not necessarily for all
C2
n possible pairs) preference of the ith particular criterion over the jth one on the entire set D of

feasible solutions:

el = {Qi � Qj} , l = 1, 2, . . . , L � n(n− 1)

2
. (10)
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The information (10) is qualitative, as it follows from it that the criterion i is more important
than the criterion j, but it is impossible to say how much or how many times. Then, taking into
account the relation (10), the range of acceptable values of the weight coefficients of importance Dw,
defined as (8), narrows according to the relations introduced by the decision maker:

D2
w =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩
w ∈ Rn

∣∣∣∣∣∣∣∣∣∣∣

wi � w0 > 0, i = 1, 2, . . . , n;
n∑

i=1

wi = R;

〈wi � wj〉el , l = 1, 2, . . . , L

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
. (11)

In some cases, the decision maker has the ability to clarify information about the relationship
of weight coefficients wi and wj associated with a binary relation {Qi � Qj} using the parameter
gl � 1:

D3
w =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩
w ∈ Rn

∣∣∣∣∣∣∣∣∣∣∣

wi � w0 > 0, i = 1, 2, . . . , n;
n∑

i=1

wi = R;

〈wi � glwj〉el , l = 1, 2, . . . , L

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
. (12)

If the ares of feasible values of the weight coefficients (11) and (12) are not empty, then the
qualitative information is consistent.

In several works [4, 6], an approach was proposed and developed in which the weight coefficients
of the importance of particular criteria are uncontrollable factors, and their values can be different
for different alternatives.

Sometimes, in the decision making process, it is reasonable to take into account the dependence
of the weight coefficients on the value of the particular criteria at each point of the domain of
feasible solutions. Assuming that the decision maker can not accurately determine the numerical
values of the weight coefficients w, they can be considered as uncontrolled factors and, applying
the principle of guaranteed result, proceed to the following decision-making model:

x∗ = argmin
x∈D

max
w∈Dw

F (q(x), w) (13)

subject to

D = {1, 2, . . . , ND} , (14)

D3
w =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩
w ∈ Rn

∣∣∣∣∣∣∣∣∣∣∣

wi � w0 > 0, i = 1, 2, . . . , n;
n∑

i=1

wi = R;

〈wi � glwj〉el , l = 1, 2, . . . , L

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
. (15)

4. QUALITY INFORMATION GRAPH

Qualitative information about the expert’s preferences can be represented as a directed graph
G(V,E), where V is the set of vertices corresponding to particular criteria, E is the set of edges
connecting the ith vertex with the jth vertex if and only if the relation (Qi � Qj) is completed.

In what follows, we will assume that information messages (7) satisfy the transitivity condition,
that is, there are no closed cycles in the graph G(V,E).
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Let us divide the set I of graph vertices into tiers as follows:
— the first tier (s = 1) includes all vertices that do not include any arc;
— to the second tier (s = 2) those and only those vertices that include arcs from the vertices of

the first layer;
— to the third tier (s = 3) those and only those vertices that include arcs from the vertices of

the first and second layers, etc.
In this case, the vertices of the last tier (s = S � N) will not have a single outgoing arc.

In the special case of the absence of qualitative information (7), the graph G(V,E) will be a
collection of N isolated vertices. And in the particular case of linear ordering of particular criteria,
the graph G(V,E) will have the number of layers equal to the number of vertices (S = n).

As an example, consider a preference graph (Fig. 1) containing six vertices (criteria) and addi-
tional qualitative information introduced by the decision maker: e1 = {Q6 � Q4}, e2 = {Q6 � Q3},
e3 = {Q4 � Q1}, e4 = {Q3 � Q1}, e5 = {Q3 � Q2}, e6 = {Q1 � Q5}.

6

4

1

1 2

43 5

6

3

2

5

Fig. 1. Example of the preference graph.

For each vertex of the graph vi ∈ {1, 2, . . . , n} corresponding to the particular criterion Qi, we
introduce the following notation: Vi is the set of vertices of the graph G(V,E) from which there is
a path to vertex i, including itself; ni is the cardinality of the set Vi.

Let p be an arbitrary path in the graph G(V,E): p = {l1, . . . , ln(p)}, where li ∈ E is an arc
included in the path p; n(p) is the number of arcs in the path p. Denote by P k

i the set of all paths
from vertex i to vertex k. Then we introduce the quantities ḡik and ¯̄gi as follows:

ḡik =

⎧⎪⎨
⎪⎩
max
p∈P k

i

∏
l∈p

gl, P k
i �= ∅

1, P k
i = ∅

(16)

for each i, k ∈ E;

¯̄gi = max
k∈E,k 	=i

gik. (17)

Obviously, ¯̄gi is a generalized estimate of the relative importance of a particular criterion i under
the conditions of qualitative information (10). An example of calculating these quantities for the
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graph shown in Fig. 1 is below. For all arcs of the graph, let us assign refinement coefficients gl,
l = 1, . . . , 6 (Table 1).

Table 1. The example of refinement coefficients

Number of arc l Coefficient gl
1 1.2rule0pt3.4mm
2 1.3
3 1.0
4 1.5
5 1.3
6 2.0

Calculation of values (16) and (17) for all vertices of the graph is given in Table 2.

Table 2. The example of vertex characteristic calculation

Vertex i Values of ḡki (P
k
i �= ∅) ¯̄gi

1 g51 = 2.0 2.0

2 – 1.0

3 ḡ53 = 2.0× 1.5 = 3.0; ḡ23 = 1.3 3.0

4 ḡ54 = 1.5× 1.0 = 1.5 1.5

5 – 1.0

6 ḡ56 = max {1.2× 1.0× 2.0; 1.3× 1.5× 2.0} = 3.9; ḡ26 = 2.0× 1.3 = 2.6 3.9

Algorithm 1

Require: s = S; ḡki = 0, i, k ∈ {1, . . . , n}.
1: For all vertices i from tier s let ¯̄gi = 1.
2: s ← s− 1. If s = 0 (that is, all tiers are passed), then go to step 4, otherwise go to step 3.
3: For each vertex k belonging to layer s, we perform the following actions. Let Jk be the set of vertices in

the layer (s+ 1) that have an arc from vertex k. Then, for each vertex j ∈ Jk, we put:

ḡki = gl,where l is number of vertex (k, j) in the graph G(V,E);

ḡik = max
j∈Jk

{
ḡjk; ḡ

i
j

}
, i �= j; ¯̄gk = max

j∈Jk

{
ḡjk; ¯̄gk

}

and go to step 2.
4: For all ḡki , for which ¯̄gk = 0, k, i ∈ {1, . . . , n} assign ḡki = 1.

5. WEIGHTING COEFFICIENTS CALCULATION FOR MAXIMAL CAUTION CRITERIA

5.1. Common Case

Consider the solution to the problem of calculating weight coefficients of importance w ∈ D4
w

using the generalized logical criterion “maximum caution”:

x∗ = argmin
x∈D

max
w∈Dw

max
1�i�n

F (q(x), w), (18)

D1
w =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩
w ∈ Rn

∣∣∣∣∣∣∣∣∣∣∣

wi � w0 � 0, i = 1, 2, . . . , n;
n∑

i=1

wi = R;

〈wi � glwj〉el , l = 1, 2, . . . , L

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
. (19)

For fixed values of the variable parameters x ∈ D, the values of the vector criterion q(x) are
definite.
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Applying a linear model for determining mixed strategies in a zero sum matrix game [14], in
the general case, the solution to problem (18)–(19) can be obtained by solving the following linear
optimization problem:

max v (20)

subject to

D =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩
w ∈ Rn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

wi � w0 � 0, i = 1, 2, . . . , n;
n∑

i=1

wi = R;

〈wi � glwj〉el , l = 1, . . . , L

wiqi(x) � v, i = 1, . . . , n

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (21)

Consider an example of calculating weight coefficients. Let us assume that the values of partial
optimality criteria for one feasible solution, normalized to the interval [0, 1], are given in Table 3.
In this table calculated weighting coefficients are given as well.

Table 3. The example of criteria values of the feasible solution and calculated weighting coefficients

Criteria Q1 Q2 Q3 Q4 Q5 Q6

Criteria values qi 0.1 1.0 0.5 0.3 0.9 0.3

Weighting coefficients wi 0.1766 0.1767 0.2650 0.1767 0.0196 0.3445

The above solution to the problem of calculating the weight coefficients of importance of partic-
ular criteria was obtained using the LPSolv software package [15]. The source code in LP format
to solve the problem is given below.

Listing 1. Source LP code

/* Objective function */
max: v;

/* Variable bounds */
w1 + w2 + w3 + w4 + w5 + w6 = 1;

w1 >= 0.01;
w2 >= 0.01;
w3 >= 0.01;
w4 >= 0.01;
w5 >= 0.01;
w6 >= 0.01;

w6 >= 1.2 * w4;
w6 >= 1.3 * w3;
w4 >= 1.0 * w1;
w3 >= 1.5 * w1;
w3 >= 1.3 * w2;
w3 >= 2.0 * w5;
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0.1 w1 >= v;
1.0 w2 >= v;
0.5 w3 >= v;
0.3 w4 >= v;
0.9 w5 >= v;
0.3 w6 >= v;

The above solution was obtained by solving a linear optimization problem using the simplex
method. For special cases of qualitative information about preferences and, therefore, the range
of acceptable values of importance weight coefficients, the calculation of coefficient values can be
carried out by faster algorithms.

5.2. Calculation in Particular Cases

Consider the solution to the problem of calculating weight coefficients of importance w ∈ D2
w

(11) using the generalized logical criterion “maximum caution”:

x∗ = argmin
x∈D

max
w∈Dw

F (q(x), w), (22)

D1
w =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩
w ∈ Rn

∣∣∣∣∣∣∣∣∣∣∣

wi � w0 � 0, i = 1, 2, . . . , n;
n∑

i=1

wi = R;

〈wi � wj〉el , l = 1, 2, . . . , L

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
. (23)

To calculate the values of the weight coefficients of importance w in the case of the condition of
their non-negativity, that is, for the case w0 = 0, the Algorithm 2 can be applied.

Algorithm 2

1: The graph G(V,E) is divided to tiers.
2: Assigning an initial value w′

j ← 0 to each vertex j of the graph G(V,E), j = 1, . . . , n.
3: Consider the lowest layer as the first layer: s ← S.
4: w′

j ← max
{
w′

j , R/qj(x)
}
to all vertices j of tier s.

5: Adjustment of w′
j values for vertices of higher layers:

w′
j = max

{
w′

j ,max
k∈Vj

w′
k

}
,

Vj is the set of vertices, which have path to vertex j.
6: Let s = s− 1. If s = 0 i.e. all tiers have been passed, go to step 7. Otherwise repeat from the step 4.
7: Calculate final values of weighting coefficients:

w∗
j =

R× w′
j

n∑
i=1

w′
i

Consider a generalization of the extrema problem (22)–(23) for the case w0 � 0. To solve this
problem, the Algorithm 3 can be applied.

The proof of the correctness of the above algorithms is contained in [5].
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Algorithm 3

Require: V ′ = V = {1, . . . , n} ;R′ = R;E′ = E.
1: Apply Algorithm 2 to graph G(V,E) with R = R′ and get values w′

j .
2: If for all j ∈ V ′ it is true w′

j � w0 then assign w∗
j = w′

j , j ∈ V ′ and the task has been solved. Otherwise
go to the step 4.

3: For all vertex m ∈ V ′, for which w′
m < w0, make the following:

— assign w′
m = w0;R

′ = R′ − w0;
— exclude the vertex m from consideration, for this assign V ′ = V ′ \ m and from the set E′ we

exclude the arcs incident to the vertex m, if any.
4: Repeat from step 1.

6. WEIGHTING COEFFICIENTS CALCULATION FOR MAXIMAL RISK CRITERIA

Consider the solution to the problem of calculating weight coefficients of importance w ∈ D4
w

(6) using the generalized logical criterion “maximum risk”:

x∗ = arg max
w∈Dw

max
1�i�n

F (q(x), w) (24)

subject to

D1
w =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩
w ∈ Rn

∣∣∣∣∣∣∣∣∣∣∣

wi � w0 � 0, i = 1, 2, . . . , n;
n∑

i=1

wi = R;

〈wi � glwj〉el , l = 1, 2, . . . , L

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
. (25)

For fixed values of the variable parameters x ∈ D, the values of the vector criterion q(x) are
definite as well.

The optimal solution of the optimization task (24)–(25) is the w∗, which has components:

w∗
i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(R′ḡri )∑
k∈Vr

ḡrk
+ ¯̄giw0, i ∈ Vr;

¯̄giw0, i /∈ Vr,

(26)

here

R′ = R− w0 ×
n∑

i=1

¯̄gi � 0, (27)

values ḡri and ¯̄gi are determined by (16) and (17), respectively; Vi is the set of vertices of the graph
G(V,E) from which there is a path to vertex i, including itself; ni is the cardinality of the set Vi,
value r is obtained from the relations:

yr = max
1�k�n

yk, (28)

yk = max
i∈Vk

⎛
⎜⎜⎜⎝qi(x)

⎛
⎜⎜⎜⎝ (R′ḡri )∑

j∈Vr

ḡrj
+ ¯̄giw0

⎞
⎟⎟⎟⎠
⎞
⎟⎟⎟⎠ . (29)

The proof of formulas (24)–(29) is given in [10].
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7. CONCLUSION

A technique for calculating the weight coefficients of the importance of particular criteria in
solving problems of multi-criteria choice and evaluation is considered. The fundamental principle
of different values of importance weight coefficients with a constant system of qualitative preferences
allows the decision maker to formulate preferences in the form of a directed graph, which, in the
case of completeness of the graph, is a strict order relation. This technique can be used both
in building interactive decision-making systems and for reducing a multi-criteria problem into a
single-criteria one for use in various optimization methods.
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